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Shock-driven gas curtain: fractal dimension evolution
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Abstract

We present estimates of the Hausdorff fractal dimension of a planar section of the interfaces on the sides of a thin curtain of
heavy gas (SF6) embedded in air and accelerated with a planar shock wave at Mach 1.2. As the Richtmyer–Meshkov instability
develops, eventually leading to a transition to turbulence in the curtain, the fractal dimension of the interfaces increases from
an initial value not exceeding 1.10 to a maximum value 1.36 ± 0.07. This value is close to that experimentally measured
for fully developed turbulence. The growth of the fractal dimension is closely related to mixing in the flow. It represents an
important and previously unmeasured property in the transition to turbulence due to Richtmyer–Meshkov instability. ©1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

During transition to turbulence, an initially deter-
ministic flow evolves to a state where individual flow
features (e.g., interface shape) are unpredictable at
least at some scales. However, the final, turbulent state
of the flow can be characterized statistically. Some
evidence suggests that the transition state may have
predictable features as well. Despite the importance
of transition to turbulence to a vast variety of hy-
drodynamical problems, a comprehensive theory of
this phenomenon is yet to be developed, and even the
phenomenological knowledge about it remains sparse.
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Statistical theories typically assume homogeneity and
isotropy and have limited applications even in the case
of fully-developed turbulence. These theories do not
offer a framework suitable for the understanding of the
transition processes, which are significantly inhomo-
geneous, anisotropic and dominated by coherent spa-
tial structures.

The specific problem of transition to turbulence in-
duced by Richtmyer–Meshkov (RM) instability may
serve as a useful test case for the more general stud-
ies. Several factors make RM particularly attractive as
such a test case. This instability develops on an inter-
face between a heavy and a light fluid subjected to an
impulsive (shock) acceleration. It is analogous to the
better known gravity-driven Rayleigh–Taylor (RT)
instability. The most important difference between
RM and RT is that the RM-unstable interface ‘coasts’
after the initial acceleration, whereas the growth of
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an RT-unstable interface is continuously driven by
gravity. This leads to smaller growth rates for RM in-
stability, simplifying the investigation of the transition
region.

Experimental studies of RM instability typically
provide sequences of flow visualization images. The
experiments can be divided into two groups. The first
group includes single-interface studies, starting with
the original work by Meshkov [1]. More recently
single-interface research was undertaken by Benjamin
[2], Brouillette and Sturtevant [3], Dimonte et al. [4]
and Velikovich and Dimonte [5]. Works in the second
group, gas-curtain studies, deal with two nearby den-
sity interfaces resulting in a curtain of heavy gas (usu-
ally sulfur hexafluoride mixed with gaseous or aerosol
tracer) embedded in a lighter gas (air). Investigations
of the flow in a shock-accelerated gas curtain have
been carried out by Jacobs et al. [6,7], Budzinski et al.
[8], Rightley et al. [9,10] and Vorobieff et al. [11].

The state of the art in gas-curtain experimentation
makes it possible to provide image sequences showing
the initial condition of the curtain prior to shock im-
pact and its subsequent evolution after the shock inter-
action, up to 30 images during a 800ms time. Thereby
one can track the evolution of the curtain through three
stages: first, the initial linear growth of the instability;
second, the vortex-dominated nonlinear deterministic
growth; third, the growth of disordered features and
the eventual transition to turbulence.

What makes these experiments particularly valuable
for transition studies is knowledge of the determinis-
tic part of the flow. It is largely prescribed by the ini-
tial geometry of the system, because the mechanism
of the initial vorticity production is baroclinic. As the
shock passes through the density interface, vorticity
is produced wherever the shock is not parallel to the
interface due to the cross-product of the gradients of
pressurep and densityρ in the vorticity equation.
Knowledge of the initial conditions and the shock
properties suffices to produce realistic estimates of the
vorticity field that forms shortly after the shock inter-
action. The subsequent vortex dynamics can be simu-
lated with a relatively simple ‘vortex blob’ model [9].
Thus, the emergence and evolution of the disordered
features that leads to turbulence can be isolated and

quantified in greater detail. The capability of a numer-
ical simulation to predict complex flows can be dis-
cerned by the accuracy of code results on a range of
scales at interfaces. A simple, quantitative method to
compare experimental results with code predictions is
fractal dimension analysis.

The measure of fractality of a turbulent flow, e.g.,
the fractal dimension of the interface between mixing
gases, is the feature associated with small-scale disor-
der in turbulence [12]. It is particularly important for
turbulent flows with mixing [13]. Fractal analysis in
turbulence has a history practically as long as the his-
tory of fractal analysis itself. The multiscale nature of
turbulence and apparent geometric complexity of tur-
bulent flows attracted the attention of Mandelbrot [12],
who suggested that the geometric structure of turbu-
lence is fractal. Subsequent studies [14–18] showed
that it is indeed possible to quantify the geometry of
turbulent flows with power-law statistics in terms of a
constant fractal dimension over a considerable range
of scales. It is also of interest that in Mandelbrot’s
book [12], the opening of the chapter on turbulence
(chapter 10 in the 1983 edition) mentions that tran-
sition to turbulence is likely to have ‘fractal aspects
of great importance, but they have not been clarified
enough to be discussed here’. Since 1983, when the
book was written, research on the fractal properties of
fully developed turbulent flows has made significant
advances, but the issue of the fractal features during the
transition to turbulence remains largely unexplored.

The present work provides measurements of the
evolution of the fractal dimension of a shock-accelera-
ted gas curtain as the flow in it undergoes the transition
to turbulence. We link these measurements with our
previous studies investigating this transition in terms
of enhanced mixing (as revealed by histogram analy-
sis [10]), formation of multiple scales (wavelet analy-
sis [10]), and in terms of the emergence of power-law
behavior of the density structure function [11].

The gas-curtain experiments provide a clean and
convenient test model for such transition studies. The
mixing layer is impulsively accelerated. Its growth rate
is lower than that for the case of constant accelera-
tion. The flow is spatially inhomogeneous, anisotropic
and initially compressible, yet the large-scale coherent
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Fig. 1. Schematic of the test part of the driven section of the shock
tube (top view).

structures driving the flow are known. The following
sections provide the description of the experimental
apparatus employed in our study and the discussion of
our observations and data interpretation with fractal
dimension analysis.

2. Experimental setup and data acquisition

The datasets analyzed in this paper were acquired
in two series of shock-tube experiments. In both se-
ries, we employed the same Mach 1.2 shock tube with
a 75 mm square cross-section. The mechanics of pro-
ducing a planar shock are straightforward. The tube
consists of two sections separated by a plastic dia-
phragm. One of the sections (driver) is pressurized.
When the diaphragm is ruptured by a solenoid-driven
puncturer, the shock propagates through the second
(driven) section of the shock tube. A part of the driven
section is equipped with view windows and a nozzle
arrangement that produces the gas curtain (see Fig.
1). The shaped nozzle at the top imposes an initially
varicose perturbation profile (wavelengthλ = 6 mm)
upon the gas injected downward into the shock tube
and removed through an exhaust plenum at the bot-
tom. The velocity of the vertical flow in the curtain is
of the order of cm/s – negligibly small when compared
with the shock-induced velocity (100 m/s). Small ran-
dom perturbations in the vertical flow lead to addi-
tional variations in the initial conditions, resulting in
emergence of a variety of flow morphologies in the
subsequent shock-accelerated flow [9].

The flow is illuminated with a laser sheet produced
either with a continuous wave (CW) 1 W argon laser
(constant illumination) or with a pulsed-laser strobe.

In the case of pulsed (strobed) lighting, images are
acquired with a 512× 512 Photometrics CCD camera.
The maximum pulsing frequency of 5 kHz limits the
number of images acquired during one event to four (it
takes about 1 ms for the shock-accelerated gas curtain
to traverse the extent of the test section). The argon
laser is used with a Hadland Photonics SVR camera
which provides a better effective temporal resolution
if the built-in gated intensifier is operated as a shutter
– up to nine images per event. In both cases, it is
possible to store multiple images (including that of
the initial conditions) on one CCD because the mean
flow carries the gas curtain downstream at 100 m/s,
and with proper exposure timing multiple exposures
can exist on the CCD without overlapping.

The curtain material, sulfur hexafluoride (five times
the density of air), is mixed with a small volume frac-
tion of a tracer (glycol fog) to facilitate flow visual-
ization. A detailed description of the setup, including
the analysis of the flow tracking fidelity of glycol fog,
is provided by Rightley et al. [9,10].

3. Observations and analysis

Fig. 2 shows two of the image sequences acquired in
gas curtain experiments and analyzed in our previous
works. The leftmost image in each sequence, denoted
by ‘IC’ shows the initial conditions, and the labels
of the subsequent images show corresponding times
(in microseconds) since the shock passed the curtain.
Black in the images corresponds to unmixed curtain
material (SF6 with glycol droplets), white to air.

The upper image sequence (Fig. 2(a)) shows the
‘sinuous’ [9] flow morphology evolution pattern de-
veloping from a regular, varicose initial condition with
a moderate amplitude of perturbation (∼ 2 mm). The
initial production of vorticity results in a row of vor-
tices of alternating sign, entraining the curtain mate-
rial to form ‘mushroom’ shapes facing alternatingly
upstream and downstream. In all the images including
the late-time ones, the flow appears vortex-driven and
deterministic on the large scale, with a few disordered
small-scale structures emerging at late times (the last
two exposures).
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Fig. 2. Gas curtain flow morphologies: (a) sinuous, and (b) irregular. Labels denote exposure timings in microseconds after shock interaction.
Duration of each exposure is 2ms.

The lower image sequence, Fig. 2(b), is an exam-
ple of an irregular flow morphology evolving from
strongly perturbed (amplitude∼ 3 mm) initial condi-
tions. In this case, the apparent growth of disordered
features is significantly accelerated. In both cases, the
deterministic large-scale flow is predominantly 2D,
while the growth of the disordered small-scale fea-
tures appears fully 3D. The 3D effects are more appar-
ent in the irregular morphology cases. The results of
the quantitative analysis of these and other sequences
have been presented in our previous works [10,11].
The main differences between a regular and disordered
evolution pattern are described below.

First, histogram analysis [10] shows that for the
regular morphologies, including the case shown in
Fig. 2(a), the mixing of the curtain material with
air is gradual and occurs at approximately the same
rate throughout the recorded duration of the exper-
iment (about 800ms). Irregular morphologies, on
the other hand, are often characterized by accelera-
tion of mixing. For the experiment presented in Fig.
2(b), such an acceleration (‘mixing transition’ [10])
occurs between the fifth (400ms) and sixth (520ms)
dynamic exposure, when approximately 40% of the
previously unmixed curtain material abruptly mixes
with air.

Second, results of wavelet analysis [10] are qualita-
tively similar for the regular and irregular morpholo-
gies; however, the wavelet signature of the coherent
structures (mushroom shapes) erodes faster in the ir-
regular morphology case.

Third, the second-order structure function of den-
sity (density–density correlation function) develops a
power-law behavior with scaling close to 2/3 for irreg-
ular morphologies [11]. A similar scaling is likely to
evolve for regular morphologies, although the limited
time duration of the experiment is insufficient to see
the completion of this process – again, regular mor-
phologies evolve towards turbulence at a slower rate
than irregular morphologies.

What are the fractal dimension characteristics asso-
ciated with this evolution and how do they vary be-
tween regular and disordered flow patterns? Before
answering this question, let us describe the method
we employ to estimate the fractal dimension of the
gas curtain interfaces with surrounding air. We use a
straightforward implementation of a box-counting al-
gorithm, the description of which can be found, for in-
stance, in the review by Theiler [19], whose arguments
we follow below to introduce the fractal dimension.

Let A be the fractal we analyze, andC(r,A) =
{B1, . . . , BK} be a finite covering ofA with
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simply-connectedBi such that theδi , the diameter
of eachBi , is less thanr. Introduce a coarse-grained
measure0

0(A, D, r) = min
C(r,A)

∑
i

δD
i , (1)

whereD is the dimension of the measure and min
represents the minimum over all coverings for which
δi < r. For most values ofD, this measure is degen-
erate (zero or infinity) in the limitr → 0. For a 1D
object (a curve) andD > 1, 0 → 0. For a finite 2D
area andD < 2, 0 → ∞. In general, one can show
the behavior of0(A, D, r) as r → 0 to satisfy the
equation

0(A, D) = lim
r→0

0(A, D, r) =
{ ∞, D < DH

0, D > DH,
(2)

where the transition pointDH for which a non-
degenerate limit exists is the Hausdorff dimension of
the fractalA.

In reality, the requirement to take the minimum over
all coverings in Eq. (1) is usually relaxed, and the
covering selected to estimate the upper bound on the
Hausdorff dimension is just a fixed-sized grid. If this
is the case for anr-sized grid, Eq. (1) transforms into

0(A, D, r) =
∑

i

δD
i =

∑
i

rD = n(r)rD, (3)

wheren(r) is the number of nonempty grid boxes. The
non-degenerate0(A, DH) would then mean that

lim
r→0

0(A, DH, r) = lim
r→0

n(r)rDH (4)

is finite. To make this possible, it must hold that

DH = lim
r→0

log[1/n(r)]

log r
. (5)

The actual range of scales over which this fractal be-
havior is observed is limited by the inner and outer cut-
off scales. Ther → 0 limit is not realized in estimating
the fractal dimension of physical objects [19]. For tur-
bulent non-reacting fluid flows, Mandelbrot suggested
the Kolmogorov scale as the value of the inner cutoff
and the characteristic size of the apparatus as the outer
cutoff [12].

Now let the time-dependent curveA(t) be the
boundary of the level set of constant intensityh > hb

corresponding to a level set of SF6 concentration in
one of the gas curtain image sequences. We select the
central part of the curtain, where the intensity falloff
from the illumination nonuniformity is negligible.
The box size (30 mm), about half the width of the test
section of the shock tube, is the outer cutoff scale.
Because the image has only a finite pixel resolution,
the pixel size has to serve as the inner cutoff. Within
this scale range, we estimateDH numerically follow-
ing Eq. (5) for each image in the sequence by plotting
log[1/n(r)] versus logr and measuring the slope
and the error of the linear fit. Each of the boundaries
includes the upstream and downstream interface. To
check for the possible influence of rasterization/box
size on the results, we also calculatedDH using only
the data within a smaller scale range – from two
pixel sizes to half the box size. This would amount
to discarding the first and the last data points in the
log[1/n(r)] – log r plot. The change inDH estimates
that such a truncation introduced was on the order of
1%.

We present data for boundaries of four level sets.
The first level set represents the area with the con-
centration of curtain material (SF6 with fog) 7% or
greater – the minimal concentration we can accurately
resolve. Similarly, the subsequent sets correspond to
14.5, 22 and 29% concentrations. For both image se-
quences, the fractal dimension of the initial conditions
in most level sets does not exceed 1.10. It is some-
what greater than unity because the interface is dif-
fuse. Level sets of the last dynamic exposure from the
image sequence in Fig. 2(b) are presented in Fig. 3.

Late-time results for the 22 and 29% concentrations
may underestimateDH because of limited spatial res-
olution – with a sufficient fraction of the curtain mate-
rial mixed with air, the ‘islands’ of higher concentra-
tion become small and may not provide enough infor-
mation for a good estimate of the fractal dimension.
Hence, we base most of our further analysis on the
first two level sets.

Fig. 4 presents the estimated box-counting dimen-
sions and linear fit errors for the image sequences in
Fig. 2. Results of the analysis of several other simi-
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Fig. 3. Level sets for the last dynamic exposure, irregular morphology (Fig. 2(b)): (a) boundary of level set with curtain material concentration
7% or greater, (b) same for 14.5%, (c) 22%, and (d) 29%. The corresponding fractal dimensionDH estimates are: (a) 1.37± 0.02, (b)
1.31± 0.02, (c) 1.26± 0.02, and (d) 1.21± 0.03.

Fig. 4. Evolution of fractal dimension estimateDH. ◦: sinuous morphology (Fig. 2(a)),d: irregular morphology (Fig. 2(b)), (a) boundary
of level set with curtain material concentration 7% or greater, (b) same for 14.5%, (c) 22%, and (d) 29%.

lar regular and disordered evolution patterns we pro-
cessed, are very close to the ones shown here. The time
in the plot is nondimensionalized with a combination
of piston velocityU = 100 m/s and the fundamental
wavelengthλ = 6 mm.

For lower concentrations (Figs. 4(a,b)), the re-
sults can be summarized as follows. The irregular
morphology is characterized by the fractal dimension
apparently approaching values 1.37 ± 0.02 for 7%
concentration, Fig. 4(a), and 1.31 ± 0.02 for 14.5%

concentration, Fig. 4(b). Other irregular morphology
data sets show a similar behavior, with the late-time
value ofDH averaged for four image sequences being
1.36± 0.07 at 7% concentration. It is noteworthy that
the change in the behavior ofDH (initially near-linear
growth slows down) occurs between the fifth and
sixth dynamic exposures – the same time interval
when, according to histogram analysis data, 40% of
the previously unmixed curtain material mixes with
air. Our previous study [10] suggests that this accel-
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Fig. 5. Irregular morphology: time history ofDH for the 14.5%
level set boundary (left vertical axis,d) and ofζ , the exponent of
the power-law fit to the second-order structure function of intensity
I2(l) from Eq. (6) (right vertical axis,◦). Gray area indicates the
‘mixing transition’ time interval according to histogram data.

eration of mixing is a sign of the ‘mixing transition’
[20,21]. To further illustrate the relationship between
the ‘mixing transition’ and the evolution of other cur-
tain properties for the irregular morphology, in Fig. 5
we compare the fractal dimension of the 14.5 % level
set boundary shown in Fig. 4(b) with the exponent
ζ of a power-law fit to the second-order structure
function of intensity

I2(l) = 〈[I (xxx + lll) − I (xxx)]2〉 ∼ lζ , (6)

where〈·〉 denotes spatial averaging in the image plane
for all points xxx = (x, y) and all 2D radius-vectors
lll, ‖lll| < 1.5λ. I2(l) can be considered as a real-space
analog of density spectrum or as the density–density
correlation [11]. The rates of change of both the ex-
ponent of the power-law fit and the fractal dimension
of the level set boundary decrease drastically after the
‘mixing transition’ (gray vertical area in the plot) oc-
curs. After this transition, the slope of the power-law
fit approaches 2/3 – the value associated with fully
developed turbulence [11].

Before the ‘mixing transition’ occurs during the
evolution of the irregular flow pattern, the behavior of
the fractal dimension for the sinuous morphology is
similar to that for the irregular morphology, but with a
time delay of the order of 1–2 units of dimensionless
time (60–120ms). No evidence of ‘mixing transition’

is present in the sinuous morphology data, and there
is no apparent slow-down in the rate of change of the
fractal dimension. The last two data points in Fig. 4
for the sinuous morphology may show the beginning
of slowing down, but the time interval of our observa-
tions is insufficient to make a conclusion. This delay
is consistent with the notion that sinuous morphology
evolves towards turbulence more slowly, in agreement
with the results acquired with different methods of
analysis [9–11]. Shock interaction with regular initial
conditions produces relatively less vorticity, leading to
slower evolution.

The behavior of level sets for higher concentra-
tions (Figs. 4(c,d)) at early times is similar to the
growth described above for lower-concentration sets.
At late times, however, the fractal dimension of
higher-concentration sets decreases. Some of this de-
crease is caused by mixing of curtain material with
air, some may also be an effect of the loss of res-
olution. Here, we must note an interesting parallel
with the work of Flohr and Olivari [18]. Their study
visualized planar sections of a turbulent jet with a
passive scalar (smoke) advected by the jet flow. The
fractal dimension of the level sets of scalar con-
centration estimated by Flohr and Olivari [18] goes
down with concentration, similar to our late-time
results.

For lower concentrations, Flohr and Olivari reported
a fractal dimension 1.30± 0.05, which is reasonably
close to our late-time result for irregular morphology
(1.36 ± 0.07). Other experimental results for fractal
dimension of 2D sections of scalar level-set interfaces
in fully developed turbulent jet and mixing-layer flows
agree with ours even better: 1.36±0.05 [15], 1.32–1.4
[14]. This agreement is important not only because
our flow is transitional, but also because we work
with density level sets in a spatially inhomogeneous
flow rather just with level sets of a passively advected
scalar. We must also note that the Reynolds numbers
of the flows studied by Flohr and Olivari (1000–3000)
and Prasad and Sreenivasan (up to 15,000) are lower
than that of our flow (conservative lower-bound esti-
mate 20,000 [10]). This may provide additional confir-
mation for the observation of Prasad and Sreenivasan
[15] that the dimension of the interface (1.36) is inde-
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pendent of the Reynolds number for sufficiently high
values of the latter.

4. Conclusions

In our study of RM instability of a shock-accelerated
gas curtain, we investigate the time evolution of the
Hausdorff dimensionDH characterizing 2D lines
bounding the level sets of the concentration of the
curtain material, heavy gas (SF6) mixed with tracer
(glycol fog). We observe that the time evolution of
DH correlates well with other diagnostics of the mix-
ing transition in gas curtain flows.DH initially has
values less than 1.10 for both the irregular and regu-
lar cases. For irregular flow morphologies (multiple,
random modes initially), earlier works found that
visual, correlation-function and histogram analyses
all show the ‘mixing transition’ occurring between
400 and 520ms after shock-acceleration of the gas
curtain, and we now find that after the transitionDH

approaches a value between 1.3 and 1.4, close to that
reported in a number of studies for the fractal dimen-
sion of interfaces in fully-developed turbulent flows.
At the same time,DH < 1.3 and is still increasing
for regular morphologies, which is consistent with
visual, correlation-function and histogram evidence
that mixing is not yet extensive in this case. We ex-
pect the ‘mixing transition’ to occur relatively late for
regular morphologies in comparison with irregular
morphologies because baroclinic vorticity produc-
tion is more disordered for irregular morphologies,
and we observe that the growth ofDH supports this
expectation. Fractal dimension analysis agrees with
three other analysis techniques in identifying the
‘mixing transition’. We suggest that the ‘mixing tran-
sition’ is an indicator of incipient turbulence both in
terms of the spectra of density fluctuations (correla-
tion function) and the geometry of interfaces (fractal
dimension).
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